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Lecture 12: October 7

The goal of today’s lecture is to prove Theorem 9.1. Let me first recall the prob-
lem. From a polarized variation of Hodge structure (of weight n) on the punctured

disk, we had constructed the period mapping Φ: H̃→ D. We also noted that

e−zRΦ(z) = e−zRSe−zRNΦ(z)

is invariant under the substitution z 7→ z + 2πi, and therefore descends to a holo-
morphic mapping Ψ: ∆∗ → Ď. Now Theorem 9.1 is the statement that Ψ extends
holomorphically to the entire disk ∆. What we are actually going to prove is that
Ψ extends continuously; this is enough, by Riemann’s extension theorem.

More precisely, we are going to prove the following distance estimate:

Proposition 12.1. There are constants B,C, δ, ε > 0 such that

dĎ

(
e−zRΦ(z), e−(z+w)RΦ(z + w)

)
≤ C|w|eεRe z

holds for every z ∈ H̃ with Re z < −B, and every w ∈ C with |w| < δ.

You should think of this as saying that the derivative of the mapping e−zRΦ(z)
takes the tangent vector ∂

∂z to a vector whose length, with respect to the metric

hĎ, is at most CeεRe z; this estimate holds on the halfspace Re z < −B. To keep
the notation simple, I have put this derivative bound in terms of distances, but
they are clearly equivalent.

Note. One can say more about the dependence of the constants: for period map-
pings with the property that Φ(−1) lies in a fixed compact subset ofD, the constants
in the proposition only depend on the period domain D and the monodromy oper-
ator T , but not on the specific period mapping being considered. This is important
in the proof of the higher-dimensional version of Schmid’s results.

It is straightforward to deduce from Proposition 12.1 that Ψ extends continuously
over the origin. Let t1, t2 ∈ ∆∗ be two points with |t1| ≤ |t2| < e−B . Choose

preimages z1, z2 ∈ H̃ such that t1 = ez1 and t2 = ez2 ; these are unique if we specify
that Re z1 ≤ Re z2 < −B and 0 ≤ Im z1, Im z2 < 2π. We can estimate the distance

dĎ

(
Ψ(t1),Ψ(t2)

)
= dĎ

(
e−z1RΦ(z1), e−z2RΦ(z2)

)

by integrating first along a line segment of length at most 2π (with constant real
part Re z2), and then along the line segment from Re z1 to Re z2 (with constant
imaginary part Im z2). Because of the derivative bound in Proposition 12.1, we get

dĎ

(
Ψ(t1),Ψ(t2)

)
≤ 2π · CeεRe z2 +

∫ Re z2

Re z1

Ceεxdx ≤ C
(

2π +
1

ε

)
eεRe z2

= C

(
2π +

1

ε

)
|t2|ε.

This goes to zero independently of t1, and so Ψ does extend continously over the
origin. By construction, we have Ψ(0) ∈ Ď.

Outline of the proof. The key ingredient in the proof is the distance-decreasing
property of period mappings. Since this only holds for the GR-invariant distance
on D, we first need to rephrase the problem in terms of dD. In

dĎ

(
e−zRΦ(z), e−(z+w)RΦ(z + w)

)
,
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we first drop the common factor e−zR; then e−wRΦ(z+w) is certainly in D as long
as |w| is very small, and so it makes sense to consider

dD

(
Φ(z), e−wRΦ(z + w)

)
.

Now remember that D ∼= GR/H, with the base point o ∈ D corresponding to the
coset H. Since GR → D is a fiber bundle, with fiber the compact subgroup H, one
can lift the period mapping Φ: H̃ → D to a C∞-mapping g : H̃ → GR, with the
property that Φ(z) = g(z) · o.
Note. Of course, g is only determined up to right multiplication by H. One can
show that there is a distinguished lifting g, which is even real-analytic; its properties
are studied in depth in Schmid’s famous SL2-orbit theorem.

Anyway, since the distance function dD is GR-invariant, we have

dD

(
Φ(z), e−wRΦ(z + w)

)
= dD

(
o, g(z)−1e−wRg(z + w) · o

)
.

Let me briefly outline how the proof is going to go. We start by investigating for
which values of w ∈ C the point g(z)−1e−wg(z+w) ·o ∈ Ď lies in the period domain
D. Initially, it looks like this should only be true when |w| is very small (because
it holds at w = 0, and D is open in Ď), but we will use the distance-decreasing
property to show that it actually holds on a vertical strip of the form

|Rew| < γ|Re z|.
We will then use the fact that the mapping e−wRΦ(z+w) is holomorphic in w and
invariant under the substitution w 7→ w + 2πi to estimate its derivative at w = 0,
which gives us a good upper bound for

dĎ

(
o, g(z)−1e−wRg(z + w) · o

)
.

This is the crucial step; after that, all we need to do is move g(z) over to the other
side and put the factor e−zR back. (There are some technical complications at the
end, but this is the basic idea.)

Details of the proof. We start by choosing an open neighborhood o ∈ U ⊆ D
isomorphic to a polydisk in CN . If we make U sufficiently small, we can assume
that the distance functions dD and dĎ, as well as the Euclidean distance on the
polydisk, are mutually bounded up to a constant.

Step 1. The distance-decreasing property of period mappings (Corollary 7.10) gives

dD

(
o, g(z)−1g(z + w) · o

)
= dD

(
g(z) · o, g(z + w) · o

)

= dD

(
Φ(z),Φ(z + w)

)
≤ dH̃(z, z + w) ≤ C|w|

|Re z| ,

where the last inequality holds on the vertical strip |Rew| < 1
2 |Re z|, for example.

By the triangle inequality,

dD

(
o, g(z)−1e−wRg(z + w) · o

)

≤dD
(
g(z)−1g(z + w), g(z)−1e−wRg(z + w) · o

)
+ dD

(
o, g(z)−1g(z + w) · o

)

≤dD
(
o, g(z + w)−1e−wRg(z + w) · o

)
+
C|w|
|Re z| ,

assuming that all the points in question lie in D, of course. The first term can be
estimated using the following lemma.
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Lemma 12.2. There are constants B,C, r > 0 such that

dD

(
o, g(z + w)−1e−wRg(z + w) · o

)
≤ C|w|
|Re z|

for every z ∈ H̃ with Re z < −B, and every w ∈ C with |w| < r|Re z|.
Putting the two things together, we arrive at the inequality

dD

(
o, g(z)−1e−wRg(z + w) · o

)
≤ C|w|
|Re z| ,

which holds for Re z < −B and |w| < r|Re z|. Shrinking r, if necessary, we can
therefore arrange that

g(z)−1e−wRg(z + w) · o ∈ U ⊆ D
as long as Re z < −B and |w| < r|Re z|. After further increasing the value of B,
we can arrange moreover that the set

{
w ∈ C

∣∣ |w| < r|Re z|
}

contains the rectangular box
{
w ∈ C

∣∣ |Rew| < γ|Re z| and 0 ≤ Imw ≤ 2π
}
,

where γ = 1
2r, say. Now remember that

g(z)−1e−wRg(z + w) · o = g(z)−1e−wRΦ(z + w)

is invariant under w 7→ w + 2πi. This means that if g(z)−1e−wRg(z + w) ∈ U for
every w in a box of height 2π, then the same thing is true on the whole vertical
strip |Rew| < γ|Re z|. We can summarize the result of the first step as follows:
there are constants B, γ > 0 such that

(12.3) g(z)−1e−wRg(z + w) · o ∈ U
for every z ∈ H̃ with Re z < −B, and every w ∈ C with |Rew| < γ|Re z|.
Step 2. Recall that U is ismomorphic to a polydisk in CN . Each of the N coordinate
functions, applied to the point

g(z)−1e−wRg(z + w) · o = g(z)−1e−wRΦ(z + w),

is therefore a holomorphic function of w that is bounded, defined on the vertical
strip |Rew| < γ|Re z|, and periodic of period 2πi. The following cute lemma, due to
Schmid and Deligne, provides an upper bound on the derivative of such a function.
(This is an instance of the general principle that, in order for a holomorphic function
to be defined on a big neighborhood of a given point, its Taylor coefficients at that
point must be small.)

Lemma 12.4. Let f be a holomorphic function that is bounded, defined on a vertical
strip of the form |Rew| < γx, and periodic of period 2πi. Then

|f ′(0)| ≤ 4π · eγx

(eγx − 1)2
· sup

{
|f(w)|

∣∣ |Rew| < γx
}
.

Proof. The fact that f is periodic implies that f(w) = g(ew), where

g :
{
t ∈ C

∣∣ e−γx < t < eγx
}
→ C

is a bounded holomorphic function defined on an annulus. Since f ′(0) = g′(1), it
suffices to estimate the derivative g′(1); this can be done using the residue theorem.
For ε > 0 sufficiently small, the residue theorem gives

g′(1) =

∫

|t|=eγx−ε

g(t)dt

(t− 1)2
−
∫

|t|=e−(γx−ε)

g(t)dt

(t− 1)2
,
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and after using the triangle inequality and doing some easy integrals, we arrive at

|g′(1)| ≤ 4π · eγx−ε

(eγx−ε − 1)2
· sup

{
|g(t)|

∣∣ e−(γx−ε) < |t| < eγx−ε
}
.

Now let ε→ 0 to get the desired inequality for |f ′(0)| = |g′(1)|. �

As long as x is sufficiently large, we have

eγx

(eγx − 1)2
≤ 2e−γx,

which is the sort of upper bound we are looking for. Back to our problem. Lemma 12.4,
applied to the coordinates (with respect to the polydisk) of the point

g(z)−1e−wRg(z + w) · o = g(z)−1e−wRΦ(z + w),

gives us an upper bound on the derivative at w = 0. If we phrase this is terms of
distances, it says that there are constants B,C, γ, δ > 0, such that

(12.5) dĎ

(
o, g(z)−1e−wRg(z + w) · o

)
< C|w| · eγ Re z

for every z ∈ H̃ with Re z < −B, and every w ∈ C with |w| < δ. (Here we are
using the fact that the distance function dĎ on U , and the Euclidean distance on
the polydisk, are mutually bounded up to a constant.)

Step 3. It remains to put everything back into the right place. The following lemma
allows us to more g(z) back to the first argument.

Lemma 12.6. There is are constants B,C > 0 and an integer ` ∈ N such that

‖Ad g(z)‖ ≤ C|Re z|`

for every z ∈ H̃ with Re z < −B.

Combining this lemma with Lemma 11.5, we deduce from (12.5) that

dĎ

(
Φ(z), e−wRΦ(z + w)

)
= dĎ

(
g(z) · o, e−wRg(z + w) · o

)
< C|w| · |Re z|`eγ Re z.

After increasing B and slightly shrinking γ, we can put this back into the form

(12.7) dĎ

(
Φ(z), e−wRΦ(z + w)

)
< C|w| · eγ Re z,

again valid for every z ∈ H̃ with Re z < −B, and every w ∈ C with |w| < δ.

Step 4. The last thing is to put back the factor e−zR. Since e−zRΦ(z) is invariant

under z 7→ z + 2πi, we can restrict to points z ∈ H̃ with 0 ≤ Im z ≤ 2π. Now

e−zR = e−Re zRSe−Re zRN e−i Im zRSe−i Im zRN ,

and the third and fourth factor are obviously bounded as long as 0 ≤ Im z ≤ 2π.
Furthermore, RN is nilpotent, and so

‖Ad e−Re zRN ‖ ≤ C|Re z|`

for a suitable constant C > 0 and integer ` ∈ N. This is neglible compared to the
exponential in our estimate, and so the factor e−Re zRN is harmless. What about
the remaining factor e−Re zRS? Recall from Lemma 11.6 that

‖Ad e−Re zRS‖ ≤ Ce(αmax−αmin) Re z,

where αmax and αmin are the largest and smallest eigenvalues of RS . Set ρ =
αmax−αmin ; this is a real number in the interval [0, 1). Putting everything together,
and adjusting B and γ as before, we find that

(12.8) dĎ

(
e−zRΦ(z), e−(z+w)RΦ(z + w)

)
< C|w| · eγ Re z · eρ|Re z|,
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valid for every z ∈ H̃ with Re z < −B, and every w ∈ C with |z| < δ. Here we run
into a serious problem: the difference ρ = αmax − αmin may well be bigger than
the small number γ > 0, and so putting back the factor e−Re zRS has ruined our
estimate. Since there is no way to increase the value of γ, it looks at first glance as
if we are doomed.

Step 5. Fortunately, there is a way around this nasty problem. Namely, as I already
suggested at the end of Lecture 11, we can use cyclic coverings to squeeze the
eigenvalues of RS closer together. In order not to make the notation confusing, we
are going to work entirely on the halfspace H̃ though – the cyclic coverings will only
happen implicitly.

Recall that T = e2πiRN e2πiRS , where RS is semisimple with eigenvalues in a
fixed interval I. For any m ≥ 1, we can pick a semisimple operator Sm ∈ End(V ),
with eigenvalues in the interval [− 1

2m ,
1

2m ), such that

e2πimRS = e2πimSm .

With this choice, mSm has eigenvalues in the fixed interval [− 1
2 ,

1
2 ). Note that Sm

and RS have the same eigenspaces (but with different eigenvalues); in particular,
each Sm commutes with RN . Now consider the expression

g(z)−1e−w(RN+Sm)Φ(z + w) ∈ Ď.
It is still holomorphic, but only invariant under the substitution w 7→ w + 2πim.
By applying our previous analysis to this function, we get

(12.9) dĎ

(
e−z(RN+Sm)Φ(z), e−(z+w)(RN+Sm)Φ(z+w)

)
< C|w| · e γm Re z · eρm|Re z|,

where ρm is the difference between the largest and smallest eigenvalues of Sm. The
additional 1

m in the exponent comes from adapting Lemma 12.4 to holomorphic
functions that are periodic of period 2πim.

Step 6. This still doesn’t look good: we can move the eigenvalues of Sm closer
together by increasing m, but only at the cost of replacing γ by the much smaller
number γ

m . Fortunately, this problem can be solved with the help of results in
Diophantine approximation. Here is why. Suppose that α is one of the eigenvalues
of RS . It is easy to find the corresponding eigenvalue of Sm: this is

mα− k
m

= α− k

m
,

where k is the integer closest to mα. We are trying to get ρm, the difference between
the largest and smallest eigenvalue of Sm, to be less than 2γ

3m , say, and so we need
an inequality of the form ∣∣∣∣α−

k

m

∣∣∣∣ ≤
γ

3m
.

This is clearly a problem in Diophantine approximation, which is solved by the
following basic result due to Peter Gustav Lejeune Dirichlet, called the Dirichlet
approximation theorem.

Theorem 12.10. For any real numbers α1, . . . , αd ∈ R, and for every n ≥ 1, there
exists an integer q with 1 ≤ q ≤ nd, and integers p1, . . . , pd ∈ Z, such that

∣∣∣∣αi −
pi
q

∣∣∣∣ ≤
1

qn

for every i = 1, . . . , d.
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Proof. The proof is a nice exercise in the use of the pigeonhole principle (which
Dirichlet invented for this purpose, originally calling it the “box principle”). For
any real number α ∈ R, denote by {α} ∈ [0, 1) the fractional part. Divide the
d-dimensional box [0, 1]d into nd smaller boxes of side length 1

n , in the obvious way.

For k = 0, 1, . . . , nd, consider the vector(
{kα1}, . . . , {kαd}

)
∈ [0, 1]d.

Since there are nd + 1 vectors, but only nd boxes, two vectors have to land in the
same box. This gives us two integers k and k + q, with 1 ≤ q ≤ nd, such that

∣∣∣{(k + q)αi} − {kαi}
∣∣∣ ≤ 1

n
for every i = 1, . . . , n. This says that there are integers p1, . . . , pd ∈ Z such that

|qαi − pi| ≤
1

n
,

which is equivalent to the desired inequality. �
In order to apply this to our setting, let d = dimV . If we take n ≥ γ

3 , then
Dirichlet’s approximation theorem guarantees the existence of an integer m with
1 ≤ m ≤ nd, such that all eigenvalues of Sm have absolute value at most γ

3m , and

therefore ρm ≤ 2γ
3m . We then get

(12.11) dĎ

(
e−z(RN+Sm)Φ(z), e−(z+w)(RN+Sm)Φ(z + w)

)
< C|w| · eεRe z,

where ε = γ
3m is now unbelievably tiny, but still positive. By the Riemann extension

theorem, this is still enough to ensure that the holomorphic mapping

Ψm : ∆∗ → Ď,

defined by the condition that

Ψm(e
z
m ) = e−z(RN+Sm)Φ(z),

extends holomorphically over the origin. According to Lemma 11.7, this suffices to
conclude that our original mapping Ψ also extends holomorphically over the origin.
This proves Theorem 9.1.
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