LECTURE 12: OCTOBER 7

The goal of today's lecture is to prove Theorem 9.1. Let me first recall the problem. From a polarized variation of Hodge structure (of weight n) on the punctured disk, we had constructed the period mapping $\Phi : \mathbb{H} \to D$. We also noted that

$$e^{-zR}\Phi(z) = e^{-zR_S}e^{-zR_N}\Phi(z)$$

is invariant under the substitution $z \mapsto z + 2\pi i$, and therefore descends to a holomorphic mapping $\Psi \colon \Delta^* \to \check{D}$. Now Theorem 9.1 is the statement that Ψ extends holomorphically to the entire disk Δ . What we are actually going to prove is that Ψ extends continuously; this is enough, by Riemann's extension theorem.

More precisely, we are going to prove the following distance estimate:

Proposition 12.1. There are constants $B, C, \delta, \varepsilon > 0$ such that

$$d_{\check{D}}\left(e^{-zR}\Phi(z), e^{-(z+w)R}\Phi(z+w)\right) \le C|w|e^{\varepsilon\operatorname{Re} z}$$

holds for every $z \in \tilde{\mathbb{H}}$ with $\operatorname{Re} z < -B$, and every $w \in \mathbb{C}$ with $|w| < \delta$.

You should think of this as saying that the derivative of the mapping $e^{-zR}\Phi(z)$ takes the tangent vector $\frac{\partial}{\partial z}$ to a vector whose length, with respect to the metric $h_{\tilde{D}}$, is at most $Ce^{\varepsilon \operatorname{Re} z}$; this estimate holds on the halfspace $\operatorname{Re} z < -B$. To keep the notation simple, I have put this derivative bound in terms of distances, but they are clearly equivalent.

Note. One can say more about the dependence of the constants: for period mappings with the property that $\Phi(-1)$ lies in a fixed compact subset of D, the constants in the proposition only depend on the period domain D and the monodromy operator T, but not on the specific period mapping being considered. This is important in the proof of the higher-dimensional version of Schmid's results.

It is straightforward to deduce from Proposition 12.1 that Ψ extends continuously over the origin. Let $t_1, t_2 \in \Delta^*$ be two points with $|t_1| \leq |t_2| < e^{-B}$. Choose preimages $z_1, z_2 \in \tilde{\mathbb{H}}$ such that $t_1 = e^{z_1}$ and $t_2 = e^{z_2}$; these are unique if we specify that $\operatorname{Re} z_1 \leq \operatorname{Re} z_2 < -B$ and $0 \leq \operatorname{Im} z_1, \operatorname{Im} z_2 < 2\pi$. We can estimate the distance

$$d_{\check{D}}\Big(\Psi(t_1), \Psi(t_2)\Big) = d_{\check{D}}\Big(e^{-z_1 R} \Phi(z_1), e^{-z_2 R} \Phi(z_2)\Big)$$

by integrating first along a line segment of length at most 2π (with constant real part Re z_2), and then along the line segment from Re z_1 to Re z_2 (with constant imaginary part Im z_2). Because of the derivative bound in Proposition 12.1, we get

$$d_{\tilde{D}}\left(\Psi(t_1), \Psi(t_2)\right) \leq 2\pi \cdot C e^{\varepsilon \operatorname{Re} z_2} + \int_{\operatorname{Re} z_1}^{\operatorname{Re} z_2} C e^{\varepsilon x} dx \leq C \left(2\pi + \frac{1}{\varepsilon}\right) e^{\varepsilon \operatorname{Re} z_2} \\ = C \left(2\pi + \frac{1}{\varepsilon}\right) |t_2|^{\varepsilon}.$$

This goes to zero independently of t_1 , and so Ψ does extend continuously over the origin. By construction, we have $\Psi(0) \in \check{D}$.

Outline of the proof. The key ingredient in the proof is the distance-decreasing property of period mappings. Since this only holds for the $G_{\mathbb{R}}$ -invariant distance on D, we first need to rephrase the problem in terms of d_D . In

$$d_{\check{D}}\Big(e^{-zR}\Phi(z), e^{-(z+w)R}\Phi(z+w)\Big),$$

we first drop the common factor e^{-zR} ; then $e^{-wR}\Phi(z+w)$ is certainly in D as long as |w| is very small, and so it makes sense to consider

$$d_D\Big(\Phi(z), e^{-wR}\Phi(z+w)\Big).$$

Now remember that $D \cong G_{\mathbb{R}}/H$, with the base point $o \in D$ corresponding to the coset H. Since $G_{\mathbb{R}} \to D$ is a fiber bundle, with fiber the compact subgroup H, one can lift the period mapping $\Phi \colon \tilde{\mathbb{H}} \to D$ to a C^{∞} -mapping $g \colon \tilde{\mathbb{H}} \to G_{\mathbb{R}}$, with the property that $\Phi(z) = g(z) \cdot o$.

Note. Of course, g is only determined up to right multiplication by H. One can show that there is a distinguished lifting g, which is even real-analytic; its properties are studied in depth in Schmid's famous SL₂-orbit theorem.

Anyway, since the distance function d_D is $G_{\mathbb{R}}$ -invariant, we have

$$d_D\Big(\Phi(z), e^{-wR}\Phi(z+w)\Big) = d_D\Big(o, g(z)^{-1}e^{-wR}g(z+w)\cdot o\Big).$$

Let me briefly outline how the proof is going to go. We start by investigating for which values of $w \in \mathbb{C}$ the point $g(z)^{-1}e^{-w}g(z+w) \cdot o \in \check{D}$ lies in the period domain D. Initially, it looks like this should only be true when |w| is very small (because it holds at w = 0, and D is open in \check{D}), but we will use the distance-decreasing property to show that it actually holds on a vertical strip of the form

$$|\operatorname{Re} w| < \gamma |\operatorname{Re} z|$$

We will then use the fact that the mapping $e^{-wR}\Phi(z+w)$ is holomorphic in w and invariant under the substitution $w \mapsto w + 2\pi i$ to estimate its derivative at w = 0, which gives us a good upper bound for

$$d_{\check{D}}\Big(o,g(z)^{-1}e^{-wR}g(z+w)\cdot o\Big).$$

This is the crucial step; after that, all we need to do is move g(z) over to the other side and put the factor e^{-zR} back. (There are some technical complications at the end, but this is the basic idea.)

Details of the proof. We start by choosing an open neighborhood $o \in U \subseteq D$ isomorphic to a polydisk in \mathbb{C}^N . If we make U sufficiently small, we can assume that the distance functions d_D and $d_{\tilde{D}}$, as well as the Euclidean distance on the polydisk, are mutually bounded up to a constant.

Step 1. The distance-decreasing property of period mappings (Corollary 7.10) gives

$$d_D\left(o, g(z)^{-1}g(z+w) \cdot o\right) = d_D\left(g(z) \cdot o, g(z+w) \cdot o\right)$$
$$= d_D\left(\Phi(z), \Phi(z+w)\right) \le d_{\tilde{\mathbb{H}}}(z, z+w) \le \frac{C|w|}{|\operatorname{Re} z|},$$

where the last inequality holds on the vertical strip $|\operatorname{Re} w| < \frac{1}{2} |\operatorname{Re} z|$, for example. By the triangle inequality,

$$d_D \Big(o, g(z)^{-1} e^{-wR} g(z+w) \cdot o \Big)$$

$$\leq d_D \Big(g(z)^{-1} g(z+w), g(z)^{-1} e^{-wR} g(z+w) \cdot o \Big) + d_D \Big(o, g(z)^{-1} g(z+w) \cdot o \Big)$$

$$\leq d_D \Big(o, g(z+w)^{-1} e^{-wR} g(z+w) \cdot o \Big) + \frac{C|w|}{|\text{Re } z|},$$

assuming that all the points in question lie in D, of course. The first term can be estimated using the following lemma.

Lemma 12.2. There are constants B, C, r > 0 such that

$$d_D\left(o, g(z+w)^{-1}e^{-wR}g(z+w)\cdot o\right) \le \frac{C|w|}{|\operatorname{Re} z|}$$

for every $z \in \tilde{\mathbb{H}}$ with $\operatorname{Re} z < -B$, and every $w \in \mathbb{C}$ with $|w| < r|\operatorname{Re} z|$.

Putting the two things together, we arrive at the inequality

$$d_D\left(o,g(z)^{-1}e^{-wR}g(z+w)\cdot o\right) \le \frac{C|w|}{|\operatorname{Re} z|},$$

which holds for $\operatorname{Re} z < -B$ and $|w| < r |\operatorname{Re} z|$. Shrinking r, if necessary, we can therefore arrange that

$$g(z)^{-1}e^{-wR}g(z+w) \cdot o \in U \subseteq D$$

as long as $\operatorname{Re} z < -B$ and $|w| < r |\operatorname{Re} z|$. After further increasing the value of B, we can arrange moreover that the set

$$\left\{ w \in \mathbb{C} \mid |w| < r |\operatorname{Re} z| \right\}$$

contains the rectangular box

$$\left\{ w \in \mathbb{C} \ \big| \ |\mathrm{Re}\,w| < \gamma |\mathrm{Re}\,z| \text{ and } 0 \leq \mathrm{Im}\,w \leq 2\pi \right\},\$$

where $\gamma = \frac{1}{2}r$, say. Now remember that

$$g(z)^{-1}e^{-wR}g(z+w) \cdot o = g(z)^{-1}e^{-wR}\Phi(z+w)$$

is invariant under $w \mapsto w + 2\pi i$. This means that if $g(z)^{-1}e^{-wR}g(z+w) \in U$ for every w in a box of height 2π , then the same thing is true on the whole vertical strip $|\operatorname{Re} w| < \gamma |\operatorname{Re} z|$. We can summarize the result of the first step as follows: there are constants $B, \gamma > 0$ such that

(12.3)
$$g(z)^{-1}e^{-wR}g(z+w) \cdot o \in U$$

for every $z \in \tilde{\mathbb{H}}$ with $\operatorname{Re} z < -B$, and every $w \in \mathbb{C}$ with $|\operatorname{Re} w| < \gamma |\operatorname{Re} z|$.

Step 2. Recall that U is isomorphic to a polydisk in \mathbb{C}^N . Each of the N coordinate functions, applied to the point

$$g(z)^{-1}e^{-wR}g(z+w) \cdot o = g(z)^{-1}e^{-wR}\Phi(z+w),$$

is therefore a holomorphic function of w that is bounded, defined on the vertical strip $|\operatorname{Re} w| < \gamma |\operatorname{Re} z|$, and periodic of period $2\pi i$. The following cute lemma, due to Schmid and Deligne, provides an upper bound on the derivative of such a function. (This is an instance of the general principle that, in order for a holomorphic function to be defined on a big neighborhood of a given point, its Taylor coefficients at that point must be small.)

Lemma 12.4. Let f be a holomorphic function that is bounded, defined on a vertical strip of the form $|\text{Re } w| < \gamma x$, and periodic of period $2\pi i$. Then

$$|f'(0)| \le 4\pi \cdot \frac{e^{\gamma x}}{(e^{\gamma x} - 1)^2} \cdot \sup\{ |f(w)| \mid |\operatorname{Re} w| < \gamma x \}.$$

Proof. The fact that f is periodic implies that $f(w) = g(e^w)$, where

$$g: \left\{ t \in \mathbb{C} \mid e^{-\gamma x} < t < e^{\gamma x} \right\} \to \mathbb{C}$$

is a bounded holomorphic function defined on an annulus. Since f'(0) = g'(1), it suffices to estimate the derivative g'(1); this can be done using the residue theorem. For $\varepsilon > 0$ sufficiently small, the residue theorem gives

$$g'(1) = \int_{|t|=e^{\gamma x-\varepsilon}} \frac{g(t)dt}{(t-1)^2} - \int_{|t|=e^{-(\gamma x-\varepsilon)}} \frac{g(t)dt}{(t-1)^2},$$

and after using the triangle inequality and doing some easy integrals, we arrive at

$$|g'(1)| \le 4\pi \cdot \frac{e^{\gamma x - \varepsilon}}{(e^{\gamma x - \varepsilon} - 1)^2} \cdot \sup\{ |g(t)| \mid e^{-(\gamma x - \varepsilon)} < |t| < e^{\gamma x - \varepsilon} \}$$

Now let $\varepsilon \to 0$ to get the desired inequality for |f'(0)| = |g'(1)|.

As long as x is sufficiently large, we have

$$\frac{e^{\gamma x}}{(e^{\gamma x}-1)^2} \le 2e^{-\gamma x},$$

which is the sort of upper bound we are looking for. Back to our problem. Lemma 12.4, applied to the coordinates (with respect to the polydisk) of the point

$$g(z)^{-1}e^{-wR}g(z+w) \cdot o = g(z)^{-1}e^{-wR}\Phi(z+w),$$

gives us an upper bound on the derivative at w = 0. If we phrase this is terms of distances, it says that there are constants $B, C, \gamma, \delta > 0$, such that

(12.5)
$$d_{\tilde{D}}\left(o,g(z)^{-1}e^{-wR}g(z+w)\cdot o\right) < C|w| \cdot e^{\gamma \operatorname{Re} z}$$

for every $z \in \mathbb{H}$ with $\operatorname{Re} z < -B$, and every $w \in \mathbb{C}$ with $|w| < \delta$. (Here we are using the fact that the distance function $d_{\tilde{D}}$ on U, and the Euclidean distance on the polydisk, are mutually bounded up to a constant.)

Step 3. It remains to put everything back into the right place. The following lemma allows us to more g(z) back to the first argument.

Lemma 12.6. There is are constants B, C > 0 and an integer $\ell \in \mathbb{N}$ such that

 $\|\operatorname{Ad} g(z)\| \le C |\operatorname{Re} z|^{\ell}$

for every $z \in \tilde{\mathbb{H}}$ with $\operatorname{Re} z < -B$.

Combining this lemma with Lemma 11.5, we deduce from (12.5) that

$$d_{\check{D}}\Big(\Phi(z), e^{-wR}\Phi(z+w)\Big) = d_{\check{D}}\Big(g(z) \cdot o, e^{-wR}g(z+w) \cdot o\Big) < C|w| \cdot |\operatorname{Re} z|^{\ell} e^{\gamma \operatorname{Re} z}.$$

After increasing B and slightly shrinking γ , we can put this back into the form

(12.7)
$$d_{\tilde{D}}\left(\Phi(z), e^{-wR}\Phi(z+w)\right) < C|w| \cdot e^{\gamma \operatorname{Re} z},$$

again valid for every $z \in \tilde{\mathbb{H}}$ with $\operatorname{Re} z < -B$, and every $w \in \mathbb{C}$ with $|w| < \delta$.

Step 4. The last thing is to put back the factor e^{-zR} . Since $e^{-zR}\Phi(z)$ is invariant under $z \mapsto z + 2\pi i$, we can restrict to points $z \in \tilde{\mathbb{H}}$ with $0 \leq \operatorname{Im} z \leq 2\pi$. Now $e^{-zR} = e^{-\operatorname{Re} zR_S} e^{-\operatorname{Re} zR_N} e^{-i\operatorname{Im} zR_S} e^{-i\operatorname{Im} zR_N}$.

and the third and fourth factor are obviously bounded as long as $0 \leq \text{Im} z \leq 2\pi$. Furthermore, R_N is nilpotent, and so

$$\|\operatorname{Ad} e^{-\operatorname{Re} zR_N}\| \le C |\operatorname{Re} z|^{\ell}$$

for a suitable constant C > 0 and integer $\ell \in \mathbb{N}$. This is neglible compared to the exponential in our estimate, and so the factor $e^{-\operatorname{Re} z R_N}$ is harmless. What about the remaining factor $e^{-\operatorname{Re} z R_S}$? Recall from Lemma 11.6 that

$$\|\operatorname{Ad} e^{-\operatorname{Re} zR_S}\| \le C e^{(\alpha_{max} - \alpha_{min})\operatorname{Re} z},$$

where α_{max} and α_{min} are the largest and smallest eigenvalues of R_S . Set $\rho = \alpha_{max} - \alpha_{min}$; this is a real number in the interval [0, 1). Putting everything together, and adjusting B and γ as before, we find that

(12.8)
$$d_{\check{D}}\left(e^{-zR}\Phi(z), e^{-(z+w)R}\Phi(z+w)\right) < C|w| \cdot e^{\gamma\operatorname{Re} z} \cdot e^{\rho|\operatorname{Re} z|},$$

valid for every $z \in \mathbb{H}$ with $\operatorname{Re} z < -B$, and every $w \in \mathbb{C}$ with $|z| < \delta$. Here we run into a serious problem: the difference $\rho = \alpha_{max} - \alpha_{min}$ may well be bigger than the small number $\gamma > 0$, and so putting back the factor $e^{-\operatorname{Re} zR_S}$ has ruined our estimate. Since there is no way to increase the value of γ , it looks at first glance as if we are doomed.

Step 5. Fortunately, there is a way around this nasty problem. Namely, as I already suggested at the end of Lecture 11, we can use cyclic coverings to squeeze the eigenvalues of R_S closer together. In order not to make the notation confusing, we are going to work entirely on the halfspace $\tilde{\mathbb{H}}$ though – the cyclic coverings will only happen implicitly.

Recall that $T = e^{2\pi i R_N} e^{2\pi i R_S}$, where R_S is semisimple with eigenvalues in a fixed interval I. For any $m \ge 1$, we can pick a semisimple operator $S_m \in \text{End}(V)$, with eigenvalues in the interval $\left[-\frac{1}{2m}, \frac{1}{2m}\right]$, such that

$$e^{2\pi i m R_S} = e^{2\pi i m S_m}$$

With this choice, mS_m has eigenvalues in the fixed interval $\left[-\frac{1}{2}, \frac{1}{2}\right)$. Note that S_m and R_S have the same eigenspaces (but with different eigenvalues); in particular, each S_m commutes with R_N . Now consider the expression

$$g(z)^{-1}e^{-w(R_N+S_m)}\Phi(z+w)\in\check{D}.$$

It is still holomorphic, but only invariant under the substitution $w \mapsto w + 2\pi i m$. By applying our previous analysis to this function, we get

(12.9)
$$d_{\check{D}}\left(e^{-z(R_N+S_m)}\Phi(z), e^{-(z+w)(R_N+S_m)}\Phi(z+w)\right) < C|w| \cdot e^{\frac{\gamma}{m}\operatorname{Re} z} \cdot e^{\rho_m|\operatorname{Re} z|},$$

where ρ_m is the difference between the largest and smallest eigenvalues of S_m . The additional $\frac{1}{m}$ in the exponent comes from adapting Lemma 12.4 to holomorphic functions that are periodic of period $2\pi im$.

Step 6. This still doesn't look good: we can move the eigenvalues of S_m closer together by increasing m, but only at the cost of replacing γ by the much smaller number $\frac{\gamma}{m}$. Fortunately, this problem can be solved with the help of results in *Diophantine approximation*. Here is why. Suppose that α is one of the eigenvalues of R_S . It is easy to find the corresponding eigenvalue of S_m : this is

$$\frac{m\alpha - k}{m} = \alpha - \frac{k}{m}$$

where k is the integer closest to $m\alpha$. We are trying to get ρ_m , the difference between the largest and smallest eigenvalue of S_m , to be less than $\frac{2\gamma}{3m}$, say, and so we need an inequality of the form

$$\left|\alpha - \frac{k}{m}\right| \le \frac{\gamma}{3m}.$$

This is clearly a problem in Diophantine approximation, which is solved by the following basic result due to Peter Gustav Lejeune Dirichlet, called the *Dirichlet approximation theorem*.

Theorem 12.10. For any real numbers $\alpha_1, \ldots, \alpha_d \in \mathbb{R}$, and for every $n \ge 1$, there exists an integer q with $1 \le q \le n^d$, and integers $p_1, \ldots, p_d \in \mathbb{Z}$, such that

$$\left|\alpha_i - \frac{p_i}{q}\right| \le \frac{1}{qn}$$

for every $i = 1, \ldots, d$.

69

Proof. The proof is a nice exercise in the use of the pigeonhole principle (which Dirichlet invented for this purpose, originally calling it the "box principle"). For any real number $\alpha \in \mathbb{R}$, denote by $\{\alpha\} \in [0, 1)$ the fractional part. Divide the *d*-dimensional box $[0, 1]^d$ into n^d smaller boxes of side length $\frac{1}{n}$, in the obvious way. For $k = 0, 1, \ldots, n^d$, consider the vector

$$\left(\{k\alpha_1\},\ldots,\{k\alpha_d\}\right)\in[0,1]^d.$$

Since there are $n^d + 1$ vectors, but only n^d boxes, two vectors have to land in the same box. This gives us two integers k and k + q, with $1 \le q \le n^d$, such that

$$\left|\{(k+q)\alpha_i\} - \{k\alpha_i\}\right| \le \frac{1}{n}$$

for every i = 1, ..., n. This says that there are integers $p_1, ..., p_d \in \mathbb{Z}$ such that

$$|q\alpha_i - p_i| \le \frac{1}{n},$$

which is equivalent to the desired inequality.

In order to apply this to our setting, let $d = \dim V$. If we take $n \geq \frac{\gamma}{3}$, then Dirichlet's approximation theorem guarantees the existence of an integer m with $1 \leq m \leq n^d$, such that all eigenvalues of S_m have absolute value at most $\frac{\gamma}{3m}$, and therefore $\rho_m \leq \frac{2\gamma}{3m}$. We then get

(12.11)
$$d_{\check{D}}\left(e^{-z(R_N+S_m)}\Phi(z), e^{-(z+w)(R_N+S_m)}\Phi(z+w)\right) < C|w| \cdot e^{\varepsilon\operatorname{Re} z},$$

where $\varepsilon = \frac{\gamma}{3m}$ is now unbelievably tiny, but still positive. By the Riemann extension theorem, this is still enough to ensure that the holomorphic mapping

$$\Psi_m\colon \Delta^* \to \check{D},$$

defined by the condition that

$$\Psi_m(e^{\frac{z}{m}}) = e^{-z(R_N + S_m)} \Phi(z),$$

extends holomorphically over the origin. According to Lemma 11.7, this suffices to conclude that our original mapping Ψ also extends holomorphically over the origin. This proves Theorem 9.1.